Appendix 2 — DS-OL Use Cases

Summary
Use Cases
1 Low touch (without Algo)
2 Low touch (with Algo)
3 High Touch/Program Trading
4 High Touch/Program Trading - Algo
5 High Touch/Program Trading - Internal Crossing
6 Alternative Liquidity Pool (ALP) Executions
7 Internet Trading
8 Multi-day Orders
9 Basket Orders
10 Aggregated Orders
11 Execution Corrections
12 Facilitation Trading
13 Swap (hedging leg)
14 Race Conditions
15 Outage / Mass Cancel
16 Exceptions

Notes: 1. Event diagrams are depicted primarily to show the relationships between the events, which will not necessarily appear in this order

in practice.

2. Event diagrams are for illustration purposes and only a minimal number of fields are shown. For a full list of fields for each event

VNI NI NN

RN NN

HT/PT

RN NN

AN NN VNN

<\

Brief Descriptions

Low Touch orders from client (with and without splits)
Low Touch orders with Algo from client

High Touch/Program Trading orders using manual fills
High Touch/Program Trading orders using Algo for executions
High Touch/Program Trading orders using internal cross
Executions using internal Alternative Liquidity Pool (ALP)
Retail client trading through the Internet

Multi-day (GTC/GTD) orders

Trading a basket of orders

Aggregated orders executed at a HT/PT desk

Execution corrections (amendments and cancels)

Client facilitations trade at a PT desk, including change in order capacity

Generic example of swap orders
Possible race condition handling client modification or cancel
Service outage scenario and mass cancel

Exceptions and special scenarios

type please refer to the event definitions in the DS-OL Technical Specifications.

3. For the purpose of illustration, the order summary event is not depicted in some of the examples.

1. Low touch (without Algo)

Order New:A 1. Low toych order received from client and automatically routed to exchange or third-party broker
for execution

| | ' 2. Received executions directly
from exchange

Order New:A 1. Low toych order received from client and automatically routed to exchange or third-party broker
for execution

‘ Order Modify:A ‘ 2. Client sent request to change price

' ' 3. Received executions directly from exchange

Order New:A 1. Low toych order received from client and automatically routed to exchange or third-party broker
for execution
€ e Execution-A1 2. Received executions directly from exchange

Order Cancel-A 3. Order was partially filled and client sent request to cancel the order

1. Low touch order received from client with 5000 lots size

2. Due to exchange lot size limit, order is automatically split into

i
|
e ..} Split Nw:A1>- - -«} Split New‘A2> 2 smaller orders (3000 & 2000 lots) before routed to exchange

for execution

| [| & st sy o

1. Client sent low touch order to an LC with a service to derive the correct order type to the
exchange based on time received, .g. convert a normal Limit order from client to an Auction Limit
order to the when ived during the ing auction period

1 3. Recei ions directly from exch

1. Client sent low touch order to an LC with a service to derive the order price to the exchange
based on the best executable price on the market, e.g. convert a Market order from client to a
Limit order to the with an i iats price

2. The child split to exchange as Limit order at an immediately
executable price, e.g. hit the best bid/ask price on the order queue

[ExeculionAlt 3. Received execution directly from exchange

2. Low touch (with Algo)

1. Low touch order (with mixed-lot size) received from client and automatically routed to another Order New:A 1. Low touch order received from client and automatically routed to Algo
Order New:A system (e.g. Algo) to be fraded with specified strategy, the trader will fill the odd-lot portions with a
manual fill
Events at downstream trading system, such as an Aigo in this case
Events at downstream trading system, an Algo in this case - .
5 5 2. ifiple child
2. Algo received the order from upstream and split the received order into """"""""""""""""} Spit MM)""} Spiit N“AAZ) D,dz’::::c'::n;e >

multiple child orders to the exchange and/or third-party broker

-+ ED-EB e

$ > 4. Algo reacted to market conditions and amending
; . P e T :Split Modify-AA2 child split price on its own. (in DS-OL, this is a broker
[Execution:AA11] [Execution:AA21] 3. Child order splt executed (] s g/ initiated modification)

Order Modify-A ’ 5. Client sent modify request on the parent order, e.g. changing the order price

Events at the same or downstream trading system (such as an Algo) - a

5 R 6. Algo reacted fo the client
(these fills for the odd-lot portions can happen at any systemalongthe | Femmsememsesemeeemeeoeoeoocbooooo]Spld Modify-AA1 > ----Split Cancel:AA2 modify request and
/S modified/cancelled the child

orders

T ived more ions from
exchange

|
|
|
) trading system stacks) 8

Spiit New-AM1 4. Child order split for manual execution
(odd-lot)

5. Child order split executed

(L - - olit Cancel-AAT 9. Algo cancelled any remaining child orders from exchange

3. High Touch / Program Trading

Order New-A

1. A mixed-lot (orderQty=2018), high-touch agency order is received from a
client. Order has orderCapacity=A.

These events can happen on the same or & downstream trading system

............ ? Split New:A1) 2. Trader sent 2000 shares of this order directly fo the exchange

A12]

3. i ived from
(e.g. both have executionQty=1000,
executionVenue=XHKG,

S R

5 Trader broker filled 18 shares from LC's own inventory or
shares from an odd-lut broker

(ir isedTrade=True,

4. Trader split the remaining odd-lot portion for broker fill

Venus=XOFF.

executionCapacity=XF, crossTrade=True, oddLofTrade=True)

In case an odd-lot is fraded via an exchange. e.g. special lot
market, it will nol be an mtemallsed trade and LC shou!d pfov:de

the

crossTrade=False, oddLolTrade True

4. High Touch / Program Trading - Algo

Order New:A

1. High touch order received from client over the phone / bloomberg chat, trader entered the
order into the order management system (OMS) manually, and then sent the order to the Algo
trading system to execute the order.

Events st downstream trading system, such as an Algo in this case

o))

2. Algo split multiple child
orders to exchange

Execution:AA11

Split Modify‘AAZ)

3. Received executions
from exchange

4. Algo reacted to market conditions and amending
child split AA2’s price on its own. (in DS-OL, thisis a
broker inifiated modification)

5. Trader received new verbal instruction from client and modified the target price
from OMS, and in turn the modification is cascaded to the child order split to Algo

6. Algo reacted to the client price change and
modified the child order split AA1 on exchange. (in
DS-OL, this is a client initiated modification)

7. Received more ions from

8. Market has closed before the order is fully filled

9. Algo cancelled any remaining child orders
from exchange (in DS-OL, this is a broker
initiated cancellation)

5. High Touch / Program Trading - Internal Crossing

1. The HT / PT desk received orders on opposite sides from different clients, and decided to cross them internally

e

3. Execution A11 & B11 are the crossed frades. crossTrue=True, i pacity=XA, ion\ 'OFF
If this is performed during Continuous Trading session, set trad =CT. If this is perft d after market has
closed, set fradeSession=0F (including if these are posted to the trading system before market opens at T+1)

4. Execution A21 & C11 are the crossed trades, crossTrue=True, executionCapacity=XA, executionVenue=X0FF
tradeSession=CT or other values depending on actual crossing time

{ Execution:A12] -

-I Execution:A11 ’

Execution:C11

1. The HT / PT desk received orders of opposite side from different clients, some are crossed with other clients and
some are filled from LC’s own inventory

2. Execution D11 & E11 are the crossed trades. crossTrue=True, executionCapacity=XA, executionVenue=XOFF

3. Execution D12 is filled from LC's own inventory, cross True=True, executionCapacity=XP

E-———{ Execution:D11 L---*‘ Execution:E11 ‘

----1 Execution:D12]

6. Alternative Liquidity Pool (ALP) Executions

Order New-A 1. Order received from a client. which has opted-in for ALP

Events at the same or downstream trading system (such as an Algo in this case)

2. Algo fried to seek some of the liquidity from LC's ALP
--- Spiit New:AA1

D, e 2 G e i

g
?
:

4. Received execution from
ALP with, crossTrade=True,
executionVenue=XALP (LC-
defined value in this example),
tradeSession=CT

5. Algo removed the unfilled
liquidity from ALP and put
them on the exchange instead

)))

6. Received executions from
‘ Execution:AA31 Execution:AA21 SEHK with
) executionVenue=XHKG

7. Internet Trading

Order New-A 1. Internet trading order (Enhanced Limit order) is received from a retail client and received by the
= LC's trading system. The order is directly sent to exchange for executions (hence no Spiit events)
I
I
e
' ' ' L
' ' ' L
' ' ' '
'] (] i)
'
E Execution:A1 Execution:A2 Execution:A3 2. Received executions directly
' . i : from exchange
:)
'
’ Order Modify-A l 3. Client modified the order (e g price is changed), the order on exchange is modified accordingly

i
1
I,._-__-_-_-_-_E-------------------.:
i : :
E l Execution:A4 ’ ‘ Execution:A5 ‘ 4. Received executions directly from exchange
'
' J
'
'
'

Order Cancel:A 5_ Order was partially filed when client cancelled the order. the order on exchange is cancelled
accordingly (in case of fully filled order, there is usually no client cancel request)

8. Multi-day Orders

Case 1: LC's system will roll over only unfilled part of the GTC order to the next business day. Case 2: LC's system will keep the GTC order in the system until it is cancelled
1. Day 1: A GTC order received from client with timeinForce=1, and
Order New:A 1. Day 1: A GTC order received from client with timeinForce=1, and Order New:A : 3 20 e
¥ 3 assigned Jogica/OrderiD=AGTC (for example). As this is the first trading day, nDsyOrderQty =
orderQty:10000 assigned logics/Order/D=AGTC (for example) orderQty-10000 ordlegroty :%000 (mple) ing day. v

""" 2. Order split for executions

! '

¢]

{ 1

!]

1

| |

FESEES Split New:AA 2. Order split for executions r

i R i T

E l Execution:AA1 I l Execution:AA2 J I Execution:AA3 3. Executions recevied E ‘ Execution:AA1 J [Execution:AA2] [Execution:AA3] 3. Executions recevied

| 1
Order Summary 4. Order Summary for Day 1 (logica/OrderiD=AGTC) Order Summary 4. Order Summary for Day 1 (logica/Order/D=AGTC)
—————— Day 1: End of Day —————— Day 1: End of Day

5. Day 2: Original GTC order remains in the system the same logica/Order/D. this is the
second trading day. 3000 was executed in Day 1. hence nDayOrderQty = 7000, orderQfy
= 10000

5. Day 2: The unfilled quantity is rolled over to create a new order by the system. Note that
logicalOrderiD=AGTC . the same as the original order in this example

6. Order split for executions

Split New-AB
! Execution:AB1 7. Executions recevied
Execufion:BA1 7. Executions recevied :

Order Cancel:A 8. Client cancelled the GTC order before end of day 2
Order Cancel:B 8. Client cancelled the GTC order before end of day 2

5\
------] i Split Cancel:AB) 9. Unfilled order splits are cancelled, if any
\
------) }Splt Cancel:BA) 9. Unfilled order splits are cancelled, if any
Order Summary 10. Order Summary for Day 2 (logicalOrder/D=AGTC)
Order Summary 10. Order Summary for Day 2 (logica/Order/D=AGTC)

, i
:]
: i
. H
| H
:r ----- Split New BA 6. Order split for executions E
. 1
: '
. '

9. Basket Orders

1. A basket of orders is received from a client to the PT desk. Orders can be traded in a group or individually depending
on trader’s decision. Collection ID (collection!D) is assigned as 'basket=BSK01' and each order has its own logics/OrderiD

— -
boemeee Spiit New:B1 eeeee Spit New-C1

'
)
:
2. Each order received executions from an execution venue E
|
)
)
)

! [

- -<‘ Execution:A11 ’ - -“‘ Execution:B11 i Execution:C11
/ .
)

=== -{ Execution:A12 | ey Execution:C12

e

A==y Execution:C13
Y

10. Aggregated Orders

Client A ClientB ClientC
Order New A01 Order New:B01 Order New:C01 1. Three client orders are aggregated by a trader in the
orderQty:2000 orderQty:4000 orderQty-4000 LC's PT system
i 5 1 order aggregation
' 14 '
: : ; v
i H ' 2. The aggregated order should be
E ; ' Order New-D01 recorded as New Order event with its
! ! i orderQty-10000 own logica/OrderiD and
: 1 : aggregatedOrders:A01=2000]B01=4000/C01=4000 | 599r=gstedOrders field listing the
! ! 1 composites
' ' ! T
" sify-) 3. Client A modified the order before market opens, :
o::re:gw 40?3 3 trader decided to add the additional quantity to the [
) ; aggregated order as well H
‘ Order Medify:D01 ‘ 4. Trader modified the aggregated order
orderQty:12000 details accordingly, aggregatedOrders
. aggregatedOrders:A01=4000|B01=4000|C01=4000 .' list should be updated

_____ Split New-DO11 5. Order is split to an execution
venue
__J Execution:D0111 6. Received total executions of
executionQty:6000 11.000 shares from exchange
o (e.g. executionVenue=XHKG)

Execution:D0112
executionQty:5000

7. Total executions of 11,000 shares are allocated to the clients

----1 Split New:A011] ---- Split New:B011

'
8b. Post-execution allocatidns of execution with internslised Trade=True, executionCapacity=A, |
sourceExecVenue=XHKG (same values in sourceExecVenue with executionVenue from where |
the fills are allocated from) . !

P e, §
_.| Execution:A0111
executionQty:3000

I S T A e

e i ——

8a. On aggregated order only, the Allocation events provide the
direct linkages to the allocated client order’'s logica/Order/D and
the respective quantities

'
' '
' |
' |
' ey ¥ |
' '
" [

..
__.| Execution:B0111 . __| Execution:C0111
executionQty:4000 executionQty:4000

\

----: Allocation:D011 allocToLOID=A01, allocQty=3000

—_—
Order Modify:A01 9. Client A modified the order again at a later time
orderQty:7000 after partially filled the order from the allocation

b

1 ----: Allocation:D012 allocToLOID=B01, allocQty=4000
- _é) 10. Remaining order quantity is
Split New:AD12 split to an execution venue

----- Execution:A0121
executionQty:4000

----1 Allocation:D013 allocToLOID=C01, allocQty=4000

] 11. Received executions

11. Execution Corrections

Execution:A11 Execution:A12 Execution:A13 Execution:A14 3. The original executions
executionQty=1000 executionQty=1000 executionQty=2000 executionQty=2000

v 7 v 7

4. LC agreed with client to provide a different execution details of the order (e.g. changed price and/or
executed quantity). This is recorded with one summarised Execution Correction (EXCR) event.
The totals of executionQty + execCxIQty should add up to the original total executions

_____ c fion-AC11 Case 1: one summary of averaged price back to the client
EHITENOR. executionPrice:1.15, executionQty 6000, execCxIQty-0

Case 2: cancelled all executions for the client

executionPrice.0, executionQty-0, execCxIQty.6000

Case 3: partially amended and partially cancelied
executionPrice:1.16, executionQty:2500, execCxIQty-3500

12. Facilitation Trading

PT Desk Order New-A 1. High touch order received from an agency client with orderCapscity=A
2 trader then sent the order to Algo for executions
Order New-A 1. A high-touch order is received from a client at the PT
desk and requested for guaranteed price Events st current or downstream trading system
:
: Facilitation 2. In case LC cannot fulfill the facilitation request 2. Algo split multiple child orders to exchange (orderCapscity=A)
) from existing inventory, a copy of the agency order is
i eated, either y or electronically, asa Ll Split New:-AA1)-------------= Split New:AA2 }-----------
| principal order under the facilitation desk
: :
| H
5 3. Facilitation desk trader split i
' the order to exchange for 3a. Child drder AA1 is fully \
H stion as principal filled (execitionCapacity=A) !
\ P H
' i H
' S SRR || S S =00 S U S OSSR |
| e i | !
\] | 3b. Child order AA2is fully |
i . . AA22 | filled i ty=4) |
f Executon 11 [Erecuion 12 , :
' IR R 3C. Child order AA3 is partially S !
\ Execution Lo
filled (executionCapscity=A) IR
s - < Modify: 4. Client to fill the with a average price, from this point
executionCapacity:XP 4'_ Executions are;_nanu_ally filled °’!r°":“r§_ ord)er with agreed Ordes 25 onward order capacity has to y (orderCspacity=P in Split New event)
acity: price trade=True, int: lisedTrade=True,
____________ olit Cancel: 5. Cancelied non-fully filled child
o AR order AA3
6. Child order A4 for filling executions for
------------------- Split New:A4 : 2
Client A Client B Quakanteed price (omiceGopaciy=F]
Order New:A01 Order New:B02 1. Two client orders with same stock and side are received, both wanted their orders to |
orderQty-4000 orderQty:6000 be executed at the GVWAP price S -
e 5 trade with price
Ad1 5 a
I | order aggregation (executionCapacity=XP)

2. the order has its unique
Order New:G01 logicalOrderlD. with the
orderQty:10000 ‘aggregatedOrders field holding the list
AQ 1 of l.tlielll ordgrs Iogica(ordeﬂDs and . .
their quantity Order Summaiy:A 8. Order Summary with orderCapacity=AP
Facilitation

3. In case LC cannot fulfill the facilitation request
from existing inventory, a copy of the agency order is
created, either manually or electronically, as a
principal order under the facilitation desk
Split New:F1
= the orqer to exghapge for
execution as principal.

i Execution events shall have
K , for

Execution:F11
executionCapacity-P

4. Facilitation desk trader split

example

i -
orderCapacity:P

6. Executions are allocated to the clients

2 5. Executions are manually filled on the order with
--- Y S New Al i....) Split New:B021 Execution:G0111 agreed price (crossTrade=True,
orderCapacity:P orderCapacity:P ionCapacity:XP i 4 Trve, 5 1KG)
\rsarn i)

7a. On aggregated order only, the Allocation event provides the direct
linkages of the allocated client order’s logica/OrderiD and the respective
quantities

7b. Post-execution allocations of execution with
: 5 o

(same values
in with from where the fills are

allocated fram)

Allocation:G011 allocToLOID=A01, allocQty=4000

= == 2l

Allocation:G012 ‘ 8llocToLOID=801, allocQty=6000

=

13.Swap (hedging leg)

Order New A

1. A swap order received from client with one of the legs fo an eligible execufion venue. e.g. the
Exchange. If there are multiple legs to record, they should share the same key/value pairs in the
collectioniD field, e.g. collectionID:swap=S1

Execution:A11

_

[

Events at any downstream trading system for one of the eligible legs

Split New:A1 2. The leg of the order is sent to the Exchange, orderCapacity=F

3. Executions from Exchange, executionCapacity=P

14.Race Conditions

e o e e e e i

1. Low touch order received from client and automatically routed to Algo with orderQty=5000

Events st dc trading system, such as an Algo

orders to an execution venue

Execution-AAT1 3. Received executions of 3000
shares from exchange

} SDRMMD""} spm,e.,,m> 2. Algo spit muttple child

4. Client sent modify request to reduce the size of the order to 3000 before the Algo executions
was sent back to the client. The request was subsequently rejected (eventResponse Type=REJ)
because the target quantity is smaller than the executed quantity

............... e S ARTY 5. Received executions of 2000
shares from exchange

1. Low touch order received from client and is automatically routed to exchange or third-party
broker for execution

2. Client sent cancel request. but order was already executed and too late to cancel. Cancel
request is rejected (eventResponseType=REJ)

15. Outage / Mass Cancel

Order New A 1. Order received from client and routed to an execution venue

2. There was a connectivity issue. Order never reached the
execution venue (e.g. the exchange), and was stuck with no
response (eventResponseType=__null__)

Order Cancel-A 3. Trader informed the client to trade away and execute via another
- broker, client cancelled the order

Order New A 1. Order received from client and routed to an Algo trading system as instructed by the client

Events st downstream trading system, such as an Algo

2. Algo split child orders to the exchange

3. Due to an internal issue, LC inifiated kill switch to pull all market orders from exchange,
resulting all affected exchange orders being cancelled back
(eventResponseType=UNS, massCancelled=True)

e —F R

N o 5 e e e

Order Cancel-A 4. LC decided to unsolicitedly cancel the affected orders back to the
: client (eventResponseType=UNS)

16. Exceptions

Rejecting new client order request

Scenario A: Client order rejected right away

Order New-A 1. An order was received from a client in FIX and rejected right away by the LC with
ype eventResp Type=REJ

Scenario B: Client order was accepted with ACK, but eventually cancelled back to client

1. An order was recelved from a client in FIX and accepted by the LC with eventResponseType=ACK
Order was not i pr d{eg.q d to wait for market opens)

Order CancelB
WGMRGSDO"*TYDC UNS back to the client. This is recorded using Order Cancel event with eventResponse Type=UNS

2. Later the order was released but rejected due to risk checks. LC unsolicitedly cancelied the order

Order New-C 1. A high-touch order received from a client at the trading desk electronically via FIX

2. Client called the trading desk to modify the order price on client's behalf in LC's
’ Order Modify:C ‘ system, this is recorded as a Modify event with eventResponse Type=UNS. initistor=8 (for
|) unsolicited amend)

Order New:B 1. Internet trading order (Special Limit order) is received from a retail client and received by the
X LC's trading system. The order is directly sent to exchange for executions (hence no Split events)

Execution:B1 Execution:B2 2. Received executions directly from exchange, but
order is only partially filled

3 3. The unfilled part of the order is cancelled by exchange, this is ded as a Cancel event with
Sliarna eventResponseType=UNS (for unsolicited cancel)

